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Abstract. Physical properties of the ideal Bose gas with non-integer dimensions betweenD = 2
and D = 3 are theoretically investigated. Calculation shows that there exists a hierarchy of
condensation transitions with changing fractional dimensionality. The results obtained on the
specific heat and the condensed density in non-integer dimensions are similar to those for liquid
helium-4 in porous media. This results suggest that the geometrical factor may be important for
the physical properties of liquid helium-4 in porous media.

1. Introduction

Recently, liquid helium-4 in highly connected porous structures (glass plate, xerogel, aerogel,
graphite, fine powders, steel, German silver, plastic films, etc) has been studied intensively
[1–6]. However, so far no satisfactory explanation of the experimental observations on
these materials has been achieved [7–13]. Since porous media can be treated as solids with
non-integer dimensions [11–16], we believe that it is imperative to study the extent of the
dimensionality contribution to the physical properties of liquid helium-4 in order to understand
the experimental results.

In this paper, we examine the physical properties of the ideal Bose gas with non-integer
dimensions betweenD = 2 (the thin-film limit) andD = 3 (the bulk limit). The results are
compared with experimental results obtained for liquid helium-4 in porous media. Surprisingly,
we find that most of the salient features of experimental observations on liquid helium-
4 in porous solids can be found in the theoretical results for the ideal-gas model in non-
integer dimensions. This suggests that the dimensionality contribution is a dominant factor in
determining the physical properties of liquid helium-4 in porous media.

2. The ideal Bose gas in non-integer dimensions

The ideal-Bose-gas system at integer dimensions was first studied long ago [17,18]. However,
study at non-integer dimensions was first carried out only quite recently [16,19]. The density
of states which is essential for calculating thermodynamic properties of the Bose gas inD

dimensions, whereD is any real number, is given by [14]

ρD(E) = aDED/2−1 (1)
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whereaD is aD-dimensional coefficient which is known to be

aD = V (D)

0(D/2)

(
m

2πh̄2

)D/2

. (2)

Here,0 is the Gamma function,m the mass, andV (D) theD-dimensional volume.
In order to obtain physical quantities for theD-dimensional Bose gas, it is necessary to

obtain the grand partition function inD dimensions:

ln Q(z, v, t) = − ln(1 − z) −
∫ ∞

0
ln(1 − ze−βE)ρD(E) dE = − ln(1 − z) +

V

λD
gD/2+1(z)

(3)

wherez is the thermodynamic fugacity defined byz = eβµ, E( p) = p2/2m, andλ(T ) is the
thermal wavelength defined by

√
2πh̄2/mkBT . With the coefficientaD in equation (2), we can

readily calculate the grand partition function inD dimensions.gs(z) is the Bose-gas function
defined by

gs(z) =
∞∑

n=1

zn

ns
. (4)

The coefficientss andz are restricted to thes > 0 and 06 z 6 1 regions. The Bose-gas
function can be also extended to non-integer dimensions [20], and has an integral expression:

gs(z) = − 1

0(s − 1)

∫ ∞

0
dx xs−2 ln(1 − ze−x). (5)

Note that this representation is valid only whens > 1.
Using the above expressions, we obtain the average number of particles inD dimensions:

N = z
∂

∂z
ln Q(z, v, t) =

∑
p 6=0

〈np〉 + 〈n0〉 = V

λD
gD/2(z) +

z

1 − z
. (6)

We use the above equations to calculate thermodynamic properties in non-integer dimensions
in the following.

3. Physical properties of the ideal Bose gas in non-integer dimensions and liquid
helium-4 in porous media

The specific heat of the ideal Bose gas in non-integer-dimensional space can readily obtained
from the grand partition functionQ in equation (3) [17,18]:

(a) WhenT 6 Tc,

CV (T )

NkB

= D

2

(
D

2
+ 1

)
v

λD
gD/2+1(1). (7)

(b) WhenT > Tc,

CV (T )

NkB

= D

2

(
D

2
+ 1

)
v

λD
gD/2+1(z) −

(
D

2

)2
gD/2(z)

gD/2−1(z)
. (8)

The CV (T ) curves for several values of non-integer dimensions are plotted as functions of
temperature in figure 1. We observe that the cusp disappears when the dimension is less than
3, and the peak height becomes smaller with decreasing dimensionality. Also, figure 1 shows
that there is a systematic crossover in low-temperature regions.
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Figure 1. Specific heat functions of the ideal-Bose-gas system between two and three dimensions.
k is kB , and the unit of temperature isT0 whereT0 ' 5.42 K (=gD/2(1)2/DTc(D)).

Since the present model completely neglects the mutual interactions between the Bose
particles, it cannot be directly applied to liquid helium-4. However, it is interesting to study
whether the above dimensionality-dependent characteristics appear also in the specific heat
data for liquid helium-4 in porous media. Figure 2 summarizes the specific heat data for liquid
helium-4 in porous media [1–3]. Careful examination of figure 2 shows that the specific heat
data for liquid helium-4 in porous media have the following properties:

Figure 2. Heat capacity measurements for helium-4 in various porous media. (a) Jeweller’s rouge
(powder) [1]. (b) Grafoil [2]. (c) Xerogel [3]. Some data have been deleted for clarity. Arrows
indicate temperatures below which the film relaxation times go to zero.
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(a) The bulk-like sharp cusp disappears and the peak gets smaller and rounder with decreasing
dimensionality.

(b) There exists a systemic crossover at low temperatures.

We note that these characteristics are the same as the ones that we found in figure 1 for the
ideal Bose gas in non-integer dimensions. This qualitative similarity between the two systems
suggests that the dimensionality has a strong influence on the physical properties of liquid
helium-4 in porous media.

The critical temperature,Tc, for condensation of the ideal Bose gas in non-integer
dimensions can be obtained, too, from equation (6):

kBTc = 2πh̄2

m

1

[vgD/2(1)]2/D
. (9)

The almost linear behaviour ofTc as a function of dimensionality is plotted in figure 3.
Necessary parameters are taken from reference [21]. The formula can be simplified when
D approaches 2 to [22]

Tc ∼
∣∣∣∣D2 − 1

∣∣∣∣ . (10)

Although the condensation is an essential ingredient of the superfluid transition in liquid
helium-4, the condensation transition cannot be directly compared to the superfluid transition.
Here, we simply note that the critical temperature curves for the superfluidity obtained from
figure 2 show a similar linear behaviour.
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Figure 3. The critical temperatures of the ideal-Bose-gas system betweenD = 2 andD = 3.

In figure 1, we observe that the peaks of the specific heat curves become less and less
prominent, and, eventually, the curves become flat with decreasing dimensionality. We show
that this behaviour originates from a hidden hierarchy in the condensation transition with the
non-integer dimensions. The first temperature derivative of the specific heat can be readily
obtained from equations (7) and (8):

(a) WhenT 6 Tc,(
∂

∂T

)
V

CV (T )

NkB

=
(

D

2

)2(
D

2
+ 1

)
v

λD

gD/2+1(1)

T
. (11)
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(b) WhenT > Tc,(
∂

∂T

)
V

CV (T )

NkB

= −
(

D

2

)2 1

T

gD/2(z)

gD/2−1(z)

×
{

1 −
(

D

2
+ 1

)
gD/2+1(z)gD/2−1(z)

[gD/2(z)]2
+

D

2

gD/2(z)gD/2−2(z)

[gD/2−1(z)]2

}
. (12)

The first derivative ofCV is plotted in figure 4 in arbitrary units. The curves again show the shift
ofTc with decreasing dimensionality. Also, it is shown that the discontinuity of(∂CV (T )/∂T )V
disappears with decreasing dimensionality. In order to investigate this behaviour more closely,
we study the relation between the continuity of higher derivatives ofCV and the fractional
dimensionality. Taking higher derivatives ofCV and considering the behaviour atTc, we
obtain the following relation:

lim
T →Tc

[(
∂

∂T

)n

V

C−
V (T ) −

(
∂

∂T

)n

V

C+
V (T )

]
= lim

η→0

n∑
j=1

anjη
j+2−(j+1)D/2 (13)

where the coefficientsanj are finite constants, andC−
V andC+

V are the specific heats below
and aboveTc. This formula can also be proved by the mathematical induction method (see
the appendix). The hierarchy of the condensation transition with the dimensionality obtained
from the above formula is summarized at table 1. This table explains the physical origin of
the tendency towards roundness of the specific heat curves with decreasing dimensionality.
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Figure 4. Plots of the first derivatives of the specific heat functions of the ideal Bose gas between
D = 2 andD = 3. There are no cusps whenD < 3. The units for they-axis are arbitrary.

The condensate fraction inD dimensions can readily be obtained from equations (6) and
(9) as

n0

n
= 1 −

[
T

Tc(D)

]D/2

. (14)

The curves are shown for several non-integer dimensions in figure 5. It is shown that the
curves with higher dimensions have higherTc and the curves do not cross each other. As
mentioned above, the condensation fraction cannot be directly compared to the superfluid
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Table 1. The hierarchy of the condensation transition betweenD = 2 andD = 3. The symbol
‘c’ stands for being continuous atTc, and ‘d ’ for being discontinuous atTc. ‘Class’ stands for the
class of function.

Dimension CV (∂/∂T )CV (∂/∂T )2CV (∂/∂T )3CV (∂/∂T )4CV · · · Class

D = 3 c d C0

8/3 6 D < 6/2 c c d C1

10/4 6 D < 8/3 c c c d C2

.

.

.
.
.
.

2(j + 2)/(j + 1) 6 D < 2(j + 1)/j c c c c · · · (d) Cj−1

.

.

.
.
.
.

D = 2 c c c c c · · · C∞
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Figure 5. The condensate fraction inD-dimensional space.D = 2.6, 2.7, 2.8, 2.9, 3.0 from left
to right.

fraction. However, here, we again note that the superfluid fraction of liquid helium-4 shows
the same qualitative behaviour with the condensation fraction as shown in figure 5.

4. Discussion

Physical properties of the ideal Bose gas in non-integer dimensions betweenD = 2 and
D = 3 are studied theoretically. Detailed calculation of the specific heat shows that there
is a hidden hierarchy of the condensation transition with changing fractional dimensionality.
The results obtained on the specific heat and the condensed density of the ideal Bose gas in
non-integer dimensions are shown to have similar characteristics to those of liquid helium-4
in porous media. This similarity may not be totally unexpected. Careful examination of the
experimental results on liquid helium-4 in porous media reveals that the salient features are
almost independent of the materials and mutual interactions, thus suggesting that the dominant
contributions may arise from geometrical factors.
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Appendix

Here, we prove equation (13) using the mathematical induction method. First, we give some
useful relations for the Bose-gas function which are needed for the derivation:

gs(z) ∼
{

z z → 0+

0(1 − s)(− ln z)s−1 + ζ(s) z → 1− (A.1)

whereζ is the Riemann-zeta function; and(
∂z

∂T

)
V

= −D

2

z

T

gD/2(z)

gD/2−1(z)
. (A.2)

We can use the above relations for(∂η/∂T )V , too. We putz = e−η; thenz → 1 asη → 0.
We introduce a differential operator defined by

1n(T ) ≡
(

∂

∂T

)n

V

C−
V (T ) −

(
∂

∂T

)n

V

C+
V (T ) (A.3)

whereC−
V andC+

V are the specific heats below and aboveTc. For convenience, we drop the
limit notation of ‘limη→0 (or T → Tc)’ during the proof.

(i) Whenn = 1,

11(Tc) = a11η
3−D. (A.4)

This is clearly true from equation (13) and the known result forD = 3.
(ii) We assume that equation (13) is true for any positive integerk. Then

1k(Tc) =
k∑

i=1

akiη
i+2−[(i+1)/2]D. (A.5)

Using equations (A.1) and (A.2), we obtain

1k+1(Tc) =
k∑

i=1

aki

(
i + 2− i + 1

2
D

)
ηi+1−[(i+1)/2]D

(
∂η

∂T

)
V

=
k∑

i=1

aki

(
i + 2− i + 1

2
D

)
Dζ(D/2)

2Tc0(2 − D/2)
ηi+3−[(i+2)/2]D

=
k+1∑
j=2

ak+1,j−1

(
j + 1− j

2
D

)
Dζ(D/2)

2Tc0(2 − D/2)
ηj+2−[(j+1)/2]D

=
k+1∑
j=2

ak+1,j η
j+2−[(j+1)/2]D. (A.6)

aki satisfies the recurrence relation

ak+1,j = (j + 1− (j/2)D)Dζ(D/2)

2Tc0(2 − D/2)
ak+1,j−1 (A.7)
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wherej = 2, 3, 4, . . . , k + 1.
Therefore, (i) and (ii) enable us, for any positive integern, to write

1n(Tc) = lim
η→0

n∑
j=1

anjη
j+2−[(j+1)/2]D (A.8)

which completes the proof.
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